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Abstract—This paper considers stabilizing a nonlinear system
with input constraints using switched control. The first result is
that, for a given control Lyapunov function (CLF), a stabilizable
set of initial conditions can be found. The paper then considers
switching between multiple CLFs to increase the space of
stabilizing inputs which also increases the set of stabilizable
initial conditions. An algorithm is presented that identifies a
subset of the known CLFs that may be used at the current time
to produce stabilizing control inputs. While there are existing
results for switched system stabilization using CLFs, stabilization
for systems with input constraints is an original contribution.
Sum of squares (SOS) methods are discussed for generating
multiple CLFs, and examples are provided.

I. INTRODUCTION

For the problem of stabilizing nonlinear systems, ap-

proaches that make use of control Lyapunov functions (CLFs)

are widely used [1], [2]. Constructive formulas for selecting a

control input using a CLF have been referred to as “universal

formulas” [3] and have been applied to classes of systems

with inputs constraints [4]–[6]. A related graphical interpre-

tation of the CLF approach presented in [7] will be used in

the current paper.

While many nonlinear systems can be stabilized using

a single control input, the use of switching control has

several benefits. Several controllers may be designed using

competing criteria, e.g. robustness, optimality, convergence

rate, bandwidth, etc. and a supervisory control scheme can

switch between controllers to balance these criteria. Stability

of the resulting switched system may be ensured using a

common Lyapunov function approach [8], [9] or a multiple

Lyapunov function (MLF) approach [10], [11]. There has

been related work using CLFs for switched systems stability

with a common CLF [12], [13] as well as multiple CLFs [14].

Finding a CLF may not be straightforward. However, the

well-established computational methods of finding Lyapunov

functions, linear matrix inequalities (LMIs) [15] for linear

systems or sum of squares (SOS) optimization [16], [17] for

polynomial nonlinear systems, may be leveraged for finding
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CLFs. One such approach for finding CLFs by using SOS

is provided in [18]. Some discussion is given in the current

paper on an alternative method for finding multiple CLFs.

The method used assumes that a single stabilizing input is

known, and it provides a set of CLFs which may be used to

generate stabilizing control inputs.
This paper studies the problem of controlling an unstable

nonlinear system using multiple CLFs that are known. At

each time, the control input is determined from a single

CLF. Switching control is introduced when switching from

a control input determined by one CLF to a control input

determined by another CLF. It is important to note that

stabilizing nonlinear systems using switching control is a

special case of switched systems stabilization. As such, there

is prior work on this general stabilization problem, see e.g.

[19], [20]. However, the current paper studies the problem of

generating sets of stabilizing inputs using switching control

for systems with input constraints. This problem has not been

previously studied, to the best of the authors’ knowledge.
The main contribution of this paper is in proposing a

switching algorithm that guarantees stability. Rather than se-

lect a specific CLF, the algorithm is designed to identify a set

of stabilizing CLFs. This approach has a common goal with

the field of supervisory control where maximally permissive

algorithms allow any switch that does not destabilize. The

proposed algorithm is maximally permissive in that, at each

time instant, no CLFs that are known to produce stabilizing

control inputs are excluded from the set of allowable CLFs.

An additional result guarantees the existence of a stabilizing

control input for each CLF, when the initial state is con-

strained to a given set. A final contribution of this paper

is in providing a computational approach, using SOS, for

generating multiple CLFs for a given system.
This paper is organized as follows. Section II provides

background material on CLFs and a decomposition that gives

a set of stabilizing control inputs. Section III discusses the

use of CLFs for systems with input constraints. The switching

problem is introduced in Section IV along with a motivating

example. The section continues with a switching algorithm

that is maximally permissive and guarantees stability. Section

V provides computational methods of generating CLFs. An

example is given in Section VI. Concluding remarks are

provided in Section VII.

II. BACKGROUND MATERIAL

This paper considers nonlinear systems of the form,

ẋ = f(x) + g(x)u, (1)
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where x ∈ X ⊂ R
n is the system state with initial condition

x(t0) = x0, and u ∈ U ⊂ R
m is the system input. It is

assumed that f is Lipschitz continuous and that f(0) = 0 to

ensure that the origin is an equilibrium.

The CLF approach is based on the existence of a posi-

tive definite function V : R
n → R

+ that is continuously

differentiable, where R
+ denotes the positive real numbers.

Specifically, it is assumed that V may be bounded below and

above by class-K functions α and α,

α(||x||) ≤ V (x) ≤ α(||x||). (2)

For more detail on class-K functions, refer to [21]. The system

is stabilizable if

inf
u∈U

{
∂V

∂x
[f(x) + g(x)u]

}
< 0, (3)

for all x ∈ X such that x �= 0. For each state x an input

u is denoted u = φ(x). For clarity, ∂V
∂x ∈ R

1×n. It will be

useful to denote the time derivative of V , V̇ = ∂V
∂x ẋ. The

CLF approach assumes that the given system has the small

control property which is given in the following definition.

Definition 1. [3] A system of the form (1) satisfies the small
control property if ∀εu > 0, ∃δu > 0 such that, ∀x ∈ X such
that ||x|| < δu, ∃u ∈ U such that ||u|| < εu that stabilizes
the system, i.e. satisfies 3.

When there are no input constraints, finding a stabilizing

input is trivial once a CLF is known, see e.g. [3]. The

approach used in the current paper instead finds a set of

stabilizing inputs so that the actual control applied to the

system may be chosen from this set using additional criteria.

For a fixed xt at time t, a set of stabilizing control inputs

can be determined directly from a given CLF and the system

dynamics (1). This set forms a half-plane and can be found

by decomposing the control vector ut into elements parallel

and orthogonal to the vector gT (xt)
(
∂V
∂x

)T
t

as in [7],

ut = −αtg
T (xt)

(
∂V

∂x

)T

x=xt

+ ηt, (4)

where αt ∈ R is a constant scaling factor, and ηt ∈ R
m is

the orthogonal component which satisfies
(
∂V
∂x

)
t
g(xt)ηt = 0.

As a result, a stabilizing control input can be determined at

time t solely as a function of αt. With this decomposition, a

minimum stabilizing αt can be written

(αt)min =

(
∂V
∂x

)
x=xt

f(xt)∣∣∣∣∣∣(∂V
∂x

)
x=xt

g(xt)
∣∣∣∣∣∣2 . (5)

The system is marginally stable (V̇ = 0) when ut = (ut)min,

which is when αt = (αt)min and ηt = 0. For αt > (αt)min,

V̇ < 0 and the system is asymptotically stable. This decom-

position provides a constructive approach for finding a set of

stabilizing control inputs for each x ∈ X . As an alternative

to Sontag’s universal formula [3], this requires additional

computation as the input must be computed pointwise as the

state evolves. However, the approach using the decomposition

has an advantage as it provides a set of stabilizing control
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Fig. 1. The shaded half-plane represents a set of stabilizing control inputs
that can be found directly from a control Lyapunov function and the given
system dynamics by decomposition.

inputs rather than a single input. This decomposition can be

visualized for two-dimensional control inputs in Fig. 1. For a

fixed x(t), the vectors umin and η are shown.

It should be noted that any approach that uses a CLF to

generate control inputs is sufficient only for stability. The set

of all stabilizing control inputs may be significantly larger.

The motivation for the current paper comes from a desire

to increase the known set of stabilizing control inputs by

considering multiple CLFs.

III. CLFS FOR SYSTEMS WITH INPUT SATURATION

As mentioned, there is existing work on constructive meth-

ods of finding a single control input using a CLF for classes of

systems with input constraints [4]–[6]. A contribution of the

current paper is in providing a set of stabilizing inputs using

the given CLF. Specifically, this section uses the control-space

decomposition covered previously to find a set of stabilizing

inputs. The key problem in this direction is in guaranteeing

that a region of inputs exists within the specified input bound.

In order to show this result, the following assumption is made.

The notation v̂ ∈ R
m will be used to denote an arbitrary

vector in R
m with unit magnitude, i.e. ||v̂||2 = 1.

Assumption 1. The input space U is closed, bounded, and
includes a neighborhood (of radius r > 0) of the zero vector
in R

m.

This assumption guarantees that there exists a constant r >
0 that is a lower bound on the size of the available control

in each direction, i.e. there exists r ∈ R such that, ∀v̂ ∈ R
m,

there exists u ∈ U such that u ≥ rv̂.

Theorem 1. Consider an unstable nonlinear system of the
form (1) with positive definite CLF, V (x). If the input space
U satisfies Assumption 1 with constant r2 > 0, then there
exists a region of R

n that is stabilizable. Furthermore, the
set of states that are ultimately stabilizable is Xs, where

Xs = {x ∈ R
n | ||x|| ≤ δ} , (6)
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and δ > 0 is given in the following proof.

Proof. By Assumption 1, there exists a constant r2 > 0
such that, ∀v̂ ∈ R

m, there exists u ∈ U such that u ≥ r2v̂.

Likewise, the small control property (Definition 1) guarantees

there exists a constant r1 > 0 such that

|∂V∂x f(x)|∣∣∣∣∂V
∂x g(x)

∣∣∣∣ ≤ r1, (7)

for some set of states. The constant r1 can be made arbitrarily

small by the same property to satisfy r1 < r2. Define the set

of states that are pointwise stabilizable as,

Xps =

{
x ∈ R

n | |
∂V
∂x f(x)|∣∣∣∣∂V
∂x g(x)

∣∣∣∣ < r1

}
. (8)

It is important to note that x0 ∈ Xps does not guarantee

that x(t) ∈ Xps for all t. This will be guaranteed with an

additional condition. Choose rx > 0 as the largest radius of

a ball, centered at the origin, that is completely contained

within Xps. The constant δ > 0 may be chosen according to

δ = α−1(α(rx)) to define Xs ⊂ Xps. By the definition of

Xps and Xs, if x0 ∈ Xs, then V (x) ≤ α(rx). This guarantees

that ||x(t)|| ≤ rx for all t which implies x(t) ∈ Xps for all

t. As x(t) ∈ Xps for all t, there will always exist an input

u ∈ U of the form

u = −αgT (x)
(
∂V

∂x

)T

(9)

with α > αmin given by (5). As such an input u ∈ U can be

found for all x ∈ Xs, the system is stabilizable despite the

input being constrained to U .

This result allows for a stabilizable set of states Xs to

be determined directly from the known restrictions on the

input set U . Alternatively, the result provides a method of

constructively identifying a set of stabilizing control inputs

provided the state is in Xs. The set may be determined from

the knowledge of U and written as a function of x,

Us(x)={u ∈ U|u = (1 + ε1)umin(x) + ε2η, ε1 > 0} , (10)

where ε1 > 0 ensures asymptotic stability, and ε1 and ε2 are

chosen to ensure that u ∈ U .

IV. SWITCHED STABILIZATION USING MULTIPLE CLFS

The next problem studied in this paper is designing stabiliz-

ing control inputs using multiple CLFs. For a given system

(1), it is assumed that the autonomous system (u = 0), is

open-loop unstable. It is also assumed that there exist a set

of control Lyapunov functions {V1, V2, ..., VN} and class-K
functions that satisfy the following for all Vi,

αi(||x||) ≤ Vi(x) ≤ αi(||x||). (11)

Theorem 1 can be used to identify stabilizable subsets of

the state space, {X (1)
s ,X (2)

s , ...,X (N)
s } from the CLFs. As a

function of x, stabilizing input sets {U1(x),U2(x), ...,UN (x)}
can be determined by (10). The complete set of known

stabilizing control inputs that has been found for each state

x can be denoted

Us(x) =
N⋃
i=1

Ui(x). (12)

The system can be controlled by choosing a CLF i and a

corresponding control input,

u(t) = φi(x(t)) ∈ Ui(x), (13)

at each time t. While the system may be stabilized by

choosing control inputs solely in Ui, it may be desirable

to switch to a control input from space Uj given by CLF

Vj . When the control input is switched in this manner, the

resulting feedback system becomes a switched system.

A switched system is a family of dynamics with a rule

that determines switching between them. At each time, a

single subsystem is active and the system dynamics are time

invariant between switches. In the case of switching between

CLFs, each CLF of the system creates one active subsystem

which will also be referred to as a “mode” of the switched

system. When switching control is applied to the system (1),

the closed loop dynamics can be given by

ẋ = fσ(x), (14)

where σ : R+ → Σ and Σ is the set of subsystems, Σ =
{1, 2, ..., N}. The function σ(t) is piecewise constant. It is

important to note that switching between CLFs to generate a

switched control input can produce an unstable state trajectory

despite each input being stable if it were applied over the

infinite time horizon as the following example demonstrates.

Example 1. Consider a linear system

ẋ =

[
0.2 1
0.5 0.1

]
x+

[
1 10
10 1

]
u (15)

with two CLFs of the form Vi(x) = xTPix where

P1 =

[
289.1 0.104
0.104 29.76

]
and P2 =

[
2.387 0.379
0.379 99.20

]
. (16)

Either CLF can be used to generate a stabilizing control input
using the decomposition covered earlier. Instead, both CLFs
will be used and the control input switched between them.
Considering initial condition x(t0) = [0.1, 1]T , the inputs
are chosen to be near (ut)min in the stabilizing space. While
at each time t, the input is stabilizing according to one CLF,
the switching directly causes instability which can be seen in
Fig. 2.

Due to the possibility of destabilization, stability is the

primary concern for the switched control algorithm. The

algorithm given in this paper permits the use of any CLF that

will not destabilize the system. Narrowing the set of allowable

CLFs, and thus the set of switches allowed, is essentially a

supervisory control problem. A desirable property of such

an algorithm is to generate the largest known set of control

inputs that are stabilizing. This approach is commonly re-

ferred to as “maximally permissive” in supervisory control of

hybrid systems, see e.g. [22]. The active subsystem may be
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Fig. 2. The given trajectory begins at the point marked with an ‘x’. The
switching was chosen to generate an unstable trajectory by switching between
two stabilizing controllers given by two different CLFs.

chosen from this set using additional considerations such as

robustness, optimality, convergence rate, etc.

At a given time t the set of stabilizing control inputs Ui is

determined by the CLF Vi. With the input restricted to Ui, it

can be shown that all x ∈ X (i)
s are stabilizable using CLF Vi

and Theorem 1. There are many situations when it is desirable

to use control input that is not in Ui but is contained in Uj
given by CLF Vj . The switch from synthesizing a controller

using Vi to Vj may be allowed under certain conditions.

At each time, an allowable set of modes, denoted Σa, can

be enumerated. The set Σa ⊂ Σ is guaranteed not to be empty

as the current mode i is stabilizing, i.e. i ∈ Σa. The algorithm

provides a method of using all the known CLFs to construct

the set Σa. It assumes that the initial state is restricted to be

in the stabilizable set for at least one mode i, i.e.

x0 ∈
N⋃
i=1

X (i)
s . (17)

For each mode i, the algorithm tracks the value of the CLF(
V

(i)
last

)
at the last time the system switched to that mode. The

algorithm continues while t < tf , the final time. For analysis,

we assume tf =∞ while in practice tf will be finite.

Stability of the closed loop system (14) using the algorithm

is shown using a MLF approach with the known set of

CLFs. Theorem 1 is also used to guarantee the existence of

a stabilizing control input within the constraints.

Theorem 2. An unstable nonlinear system (1) may be stabi-
lized using a switched control generated by a set of CLFs, if
the active CLF Vi is always chosen according to Algorithm
1 and the control input from the set Ui determined by Vi .

Proof. As (17) is satisfied, ∃i such that x0 ∈ X (i)
s . Using

CLF Vi, Theorem 1 guarantees the existence of a stabilizing

control input u ∈ Ui. If no switching occurs, the system is

stabilizable for this initial condition as, for each x, ∃u ∈ Ui
that is stabilizing and ensures that x(t) ∈ X (i)

s for all t.

A switch i → j may occur at time t if x(t) ∈ X (j)
s and

Vj(x(t)) ≤ V
(j)
last. The condition that x(t) ∈ X (j)

s guarantees

the existence of a stabilizing input after the switch according

to Theorem 1. The condition Vj(x(t)) ≤ V
(j)
last satisfies the

Algorithm 1 Supervisory Control Algorithm

1: Initialize:
2: Set V (k)

last =∞, ∀k
3: Identify Σa where i ∈ Σa if x0 ∈ X (i)

s

4: Choose i ∈ Σa

5: Choose u ∈ Ui(x0) given by Vi

6: Set V (i)
last = Vi(x(t0))

7: while t < tf do
8: for j = 1 to j = N do
9: if x(t) ∈ X (j)

s then
10: if Vj(x(t)) < V

(j)
last then

11: Add j to Σa

12: end if
13: end if
14: end for
15: Choose stay in i or switch to j ∈ Σa

16: if switching to j then
17: Set V (j)

last = Vj(x(t))
18: Set i = j
19: end if
20: Choose u ∈ Ui(x(t)) by Vi

21: end while

Branicky non-increasing condition [10]. The algorithm guar-

antees that all subsequent switches follow these conditions,

which guarantees that the system is asymptotically stable.

Remark 1. It is important to note that this approach is
sufficient only for stability, as are all CLF approaches.
While the union of the stabilizing input sets, Us, provides an
enlarged set of known stabilizing inputs, it will not contain
every stabilizing input, in general.

Remark 2. It is assumed that the CLFs Vi(x) contain all
known information about stabilizing control inputs. The only
control input switching that is not allowed is switching that
fails one of the assumptions of Theorem 2. As a result, the
algorithm is maximally permissive in the sense that there are
no known stabilizing inputs that are disallowed.

Each iteration of the algorithm ends by providing a set of

CLFs that may be used to generate the control input. The

algorithm allows the flexibility that the actual CLF used may

be chosen using additional considerations. One example is

to choose the next mode based on which mode CLF has

decreased by the largest percentage. This control policy will

typically have a faster convergence rate than using a single

CLF.

V. COMPUTATIONAL METHODS FOR GENERATING CLFS

The algorithm presented here is readily applicable to a

given system assuming that a set of CLFs is known. However,

it may be difficult in practice to find a CLF, let alone a set.

For some classes of systems, there are methods to facilitate

the search for CLFs. For linear systems there are methods

of separating the search for a quadratic Lyapunov function

and a stabilizing state feedback control [15]. For polynomial

nonlinear systems, there are existing SOS methods to find
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CLFs, see e.g. [18]. Instead of directly using these existing

methods, we considered an alternative approach that assumes

that one stabilizing state feedback control u = φ(x) is known.

The input may be nonlinear but must be polynomial. The

input may be parametrized by

φ(x) =
∑
i

kimi(x) (18)

where ki ∈ R are constants and {mi} are all monomials that

make up the function φ(x). This control may be applied to

the system (1) to arrive at the closed loop dynamics given by,

ẋ = fcl(x) = f(x) + g(x)φ(x). (19)

Using existing SOS methods, it is possible to determine a

single CLF directly from the stabilized closed loop dynamics.

The key to using SOS methods is to relax the search for

positive definite or positive semi-definite functions to instead

search for functions that can be written as a sum of squared

terms. For example, the positive definite condition on the CLF,

V > 0, ∀x �= 0, can be relaxed to

V (x) =
∑
i

aipi(x)
2 (20)

where {pi(x)} is a set of polynomials that is specified ahead

of time. The optimization solver searches for the coefficients

ai ≥ 0. It is clear that when a function can be written as

the sum of squared terms, it must be positive semi-definite or

positive definite. It should be noted that the relaxation from

positive semi-definite to SOS is sufficient only.

As the search for a CLF is a feasibility problem, the cost to

be minimized is arbitrary. The feasibility constraints are the

system dynamics and restrictions on the Lyapunov function

V . Specifically, these restrictions are the positive definite

condition (20) and the condition that V̇ ≤ 0, which is relaxed

to the sufficient only SOS condition,

−∂V

∂x
(f(x) + g(x)u) =

∑
j

bjpj(x)
2. (21)

This assumes that the system has polynomial dynamics, and

a polynomial form must be chosen for the CLF. The semi-

definite optimization solver searches for feasible coefficients

for the CLF. The solver used to generate the CLFs in this

paper is the SOSTOOL toolbox for MATLAB [17].

After a single CLF is found, the known control input can

be perturbed by randomly varying the coefficients ki in (18)

which generates new closed loop dynamics. The same SOS

methods can be repeated to find as many additional CLFs as

desired by repeatedly perturbing the coefficients of the control

input ki.

VI. EXAMPLE

This example demonstrates the approach presented in this

paper. First, two CLFs are found using SOS methods. Then,

sets of allowable initial conditions are determined and used

in the stability preserving switching algorithm. Finally, the

system is simulated with random switching, when allowed,

to show that the resulting state trajectory is stable.
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Fig. 3. The range of stabilizing inputs is demonstrated for two CLFs for a
particular state x = [−0.2,−0.2]T .

Example 2. Consider a nonlinear system with dynamics
given by (1) where

f(x) =

(
x3
1 + x2

−x1 + x2
2

)
, g(x) =

(
1 0
0 1

)
. (22)

It is known that one stabilizing input is

u(x) =

( −k1x3
1

−k2x2 − x2
2

)
. (23)

The input is stabilizing for k1 > 1 and k2 > 0. Using the
controller, a Lyapunov function may be found for the closed
loop system using the SOS method covered in the previous
section. It is assumed that the CLF is of the form,

V (x) = xTPx+ a1x
4
1 + a2x

4
2. (24)

The input is perturbed by producing uniform random vari-
ables k1 and k2 such that 1 < k1 < 5 and 0 < k2 < 4. Two
sample CLFs can be written,

P (1) =

[
1.055 0.222
0.222 0.261

]
, a

(1)
1 = 0.652, a

(1)
2 = 0.124 (25)

P (2) =

[
0.641 0.201
0.201 0.599

]
, a

(2)
1 = 0.310, a

(2)
2 = 0.386. (26)

These two CLFs vary in the range of stabilizing inputs.
This can be visualized for a particular state when x =
[−0.2,−0.2]T as in Fig. 3. The two sets of stabilizable states
X (1)

ps and X (2)
ps provided by Theorem 1 were approximated

using a grid-based search and shown in Fig. 4.
The closed loop system was simulated with switching

control from initial condition x0 = [−0.5,−0.5]T with results
in Fig. 5. CLF V1 was active initially, and the CLF switched
according to the third plot. The system is stabilized using the
algorithm presented here despite frequent switching.

VII. CONCLUSIONS

This paper covered the problem of stabilizing a nonlinear

system with input constraints using switching control. First,

a result was presented that guaranteed the existence of a

stabilizing set of inputs within the constraints assuming that

a CLF is known. Then, a switching algorithm was presented

that guarantees stability and is maximally permissive for the
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Fig. 4. The sets of stabilizable states X (1)
ps and X (2)

ps are shown for the
CLFs V1 and V2, respectively.
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Fig. 5. The results of the simulation can be seen in three parts: the trajectories
of states x1 and x2, the CLFs V1 and V2, and the switching signal σ(t).

known CLFs for a system. These CLFs may be found using

the LMI or SOS methods discussed in this paper. Finally, an

example was provided to demonstrate the application of these

methods to a sample system.
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